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Abstract

Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behaviour of inclusions together with the surrounding
material leading to shape-based strain analysis methods belonging to the Rf/f family. By deriving the probability density function for populations
of rigid ellipses deforming in a general 2D deformation, a method is developed which can be used to estimate both finite strain and the kinematic
vorticity number. Statistical parameters are theoretically derived and their behaviours under various kinematic conditions are investigated. The
maximum likelihood method from statistics is used to produce a numerical method for estimating deformation parameters from natural popu-
lations. A simulation study demonstrates that finite strain can be estimated well for both low and high applied finite strains, whereas the kine-
matic vorticity number is well estimated only in the case of high finite strains (Rs> 40), and that large sample numbers (z1000) are required.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Shape fabrics are a common feature of deformed rocks and
are usually defined by elongate, approximately elliptical,
clasts or porphyroblasts. The finite strain which leads to
a shape fabric is usually estimated by applying the Rf/f and
related methods of strain analysis. A shared assumption of
all these methods is that individual markers behaved passively
during deformation. There are many instances where this is
not the case and application of such methods can lead to
erroneous results. Therefore the purpose of this paper is to
develop a method which allows calculation of finite strain
from a population of rigid objects. Additionally, as has been
noted by previous workers (e.g. Masuda et al., 1995; Marques
and Coelho, 2003), rigid object populations have the potential
to allow for estimation of the flow type (i.e. kinematic vorticity
number) that produced a particular distribution. Thus, the
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method developed in this paper may also be used to estimate
the flow vorticity.

There has been considerable interest in the properties of
populations rigid objects modified during deformation, most
of which is underpinned by the landmark work of Jeffery
(1922). Experimental work, both analogue and numerical,
has served to advance our understanding of the behaviour of
interacting populations of objects (see for example Ildefonse
et al., 1992a,b; Arbaret et al., 1996; Jezek et al., 1996, 1999;
Piazolo et al., 2002; Mulchrone et al., 2005). Fernandez
et al. (1983, 1987) derived the theory of rigid object shape fab-
rics developed under 2D simple shear and observed the cycli-
cal nature of such fabrics. Masuda et al. (1995) conducted an
essentially numerical study whereby initially uniform distribu-
tions of rigid particles were deformed over a range of axial
ratios and kinematic conditions. They found a gradual transi-
tion from symmetric to asymmetric distributions (when con-
sidered across all axial ratios) as the kinematics went from
pure to simple shear, respectively. Recently, Marques and
Coelho (2003) extended our understanding of the behaviour
of rigid object populations by examining their behaviour under
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transtensional and transpressional regimes. This was achieved
by deriving analytical expressions for object orientations over
time and plotting solutions for a variety of initial orientations.

In this paper, the theoretical distribution of rigid object
populations as a function of both axial ratio and deformation
regime is derived for a general 2D deformation. A method is
suggested which allows for estimation of the finite strain and
kinematics of the responsible deformation. It is important to
acknowledge the limitations of the approach at the outset
which are directly related to the mathematical models utilised.
Firstly, the method derived is valid only for the 2D case, and in
contrast to typical Rf/f methods, 3D effects may be important
in practice. In other words, identical 2D elliptical sections
through differently shaped ellipsoids will behave differently.
Secondly, inherent in Jeffery’s (1922) model for rigid particle
motion, the particle is isolated and interaction effects are not
taken into consideration. Interaction is likely to be an impor-
tant component of natural behaviour of particle populations.

2. Flow kinematics, rigid object rotation and finite strain
evolution

The modelling approach of Mulchrone et al. (2005) is
closely followed and many of the details are therefore omitted.
Important equations are listed and some derivations regarding
the finite strain state are presented. Homogeneous flows
described by the velocity gradient tensor:

L¼
�

0 L12

L21 0

�
ð1Þ

are considered. This flow is automatically incompressible and
admits all general deformations recognised by Ramberg
(1975), Means et al. (1980) and Ghosh (1987) and the kine-
matic vorticity number is given by:

Wk ¼
L12� L21

jL12þ L21j
ð2Þ

The convention for angles and rotations used here is that
the positive ordinate axis is the zero angle direction and the
counter-clockwise angles and rotations are positive and vice
versa for the clockwise case.

The eigenvectors of L (also known as the flow apophyses
by Ramberg, 1975) are directions of zero rotation, i.e. material
particles initially within these directions remain so, whereas
other particles tend to be repelled from or asymptotically
attracted into the flow apophyses (Passchier, 1997). They are
particularly helpful in visualising the passive behaviour of
points and lines as they divide the flow into zones of
counter-clockwise and clockwise rotation (see Fig. 1). Taking
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12=L21

p
, the eigenvectors are given by:

l1 ¼
�

x

1

�
and l2 ¼

�
�x

1

�
ð3Þ

and have orientations:
q1 ¼ tan�1

�
1

x

�
and q2 ¼�tan�1

�
1

x

�
It is clear that for jWkj > 1, some of the components of the

eigenvectors are imaginary and do not have a physical meaning.
The two eigenvectors coincide under simple shear ðjWkj ¼ 1Þ
and in all other cases remain distinct.

Under a general deformation of the type described by Eq.
(1), Mulchrone et al. (2005) have shown that a rigid elliptical
object rotates at a rate given by:

_f¼ L21 � L12

2
þ
ðL21 þ L12Þ

�
R2� 1

�
2
�
R2þ 1

� cos 2f ð4Þ

where f is the orientation of the major axis of the object and R
is the axial ratio. This equation is used extensively in the next
section.

As one of the aims of this paper is to explore the relation-
ship between rigid object fabrics and the strain ellipse,
equations are derived that describe the evolution of the strain

1

2 X2 X2

Wk=0;L12=0.5;L21=0.5 Wk=0.5;L12=0.5;L21=0.166

(a)

(b) (c)

(d) (e)

L12 L12

X1 X1

Wk=1;L12=0.5;L21=0 Wk=4;L12=0.5;L21=-0.3

l1

l2

l2

l1

l1=l2

Fig. 1. (a) Velocity gradient tensor components L12 and L21 describe how the

velocity vectors (small arrows) linearly vary near the origin. Combining these

components in different proportions generates all possible flow types. For

example, (b) Wk¼ 0, pure shear with two mutually normal flow apophyses

(l1 and l2). Heavy arrows show the local rotation sense. (c) Wk¼ 0.5, interme-

diate between pure and simple shear, with two sub-normal flow apophyses. (d)

Wk¼ 1, simple shear both flow apophyses coincide along the shear direction

and (e) Wk¼ 4, no real apophyses exist and pulsating strain histories occur.
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ellipse during the general deformation. The motion of a point
p initially at ðx10; x20Þ is obtained by solving the following
system of ordinary differential equations:

dx1

dt
¼ L12x2 and

dx2

dt
¼ L21x1 ð5Þ

with the solution:

x1ðtÞ ¼ x10 coshðutÞ þ x20x sinhðutÞ ð6Þ

x2ðtÞ ¼
x10

x
sinhðutÞ þ x20 coshðutÞ ð7Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L12L21

p
. If L12L21< 0 (i.e. different signs) then

periodic solutions are possible, however, the following identi-
ties coshðixÞ ¼ cosðxÞ and sinhðixÞ ¼ isinðxÞ take care of any
modifications required. This also implies that periodic solu-
tions are only possible for Wk<�1 or Wk> 1. In the case
where either of L12 or L21 takes the value 0, we have the fol-
lowing limiting cases: for L12¼ 0:

x1ðtÞ ¼ x10 ð8Þ

x2ðtÞ ¼ x10L21tþ x20 ð9Þ

and for L21¼ 0:

x1ðtÞ ¼ x10þ x20L12t ð10Þ

x2ðtÞ ¼ x20 ð11Þ

which correspond to simple shear parallel to the x2 and x1

directions, respectively.
In order to derive information about the finite strain ellipse

the approach of Ramsay (1967, p. 58) is taken. Eqs. (6) and (7)
are solved for x10 and x20 and then substituted into the equa-
tion of the unit circle, i.e. x2

10 þ x2
20 � 1 ¼ 0 to give the equa-

tion of strain ellipse:

Ax2
1 þBx2

2 þCx1x2� 1¼ 0 ð12Þ

where:

A¼ cosh2ðutÞ þ 1=x2 sinh2ðutÞ; B

¼ cosh2ðutÞ þ x2 sinh2ðutÞ; C¼�1þ x2

x
sinhð2utÞ ð13Þ

From coordinate geometry (Sommerville, 1949, p. 126e128)
the major (or minor) axis orientation ðfsÞ and axial ratio ðRsÞ
(or inverted axial ratio) of the strain ellipse are given by:

fs ¼
1

2
tan�1

�
C

A�B

�
¼ 1

2
tan�1

�
2x cothðutÞ

x2� 1

�
ð14Þ

Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AþBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�BÞ2þC2

q
AþB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�BÞ2þC2

q
vuuut ð15Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx4þ2x2 coth2utþ

�
1þx2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x2�1

�2þ4x2 coth2ðutÞ
q

1þx4þ2x2 coth2ut�
�
1þx2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x2�1

�2þ4x2 coth2ðutÞ
q

vuuut
ð16Þ

If Rs< 1, then it should be inverted and the value of fs

should be modified by adding or subtracting p=2. This is be-
cause Eq. (14) may, for certain parameter values, identify the
minor axis instead of the major axis. After much algebraic
manipulation it can be shown that the relationship between
time t and finite strain Rs is:

t ¼ 1

u
sinh�1

2664
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x4
�
1þ x2

�4
R2

s

�
1þR2

s

�2
q

� 2R2
s

�
xþ x3

�2�
1þ x2

�4
R2

s

vuuut
3775
ð17Þ

and in the limit as L21/0 (i.e. if L12 s 0, this is simple shear)
then:

t ¼ 1ffiffiffiffiffiffiffi
L12

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L6

12

�
RsþR3

s

�2
q

� 2L3
12R2

s

L4
12R2

s

vuut
These expressions come in very handy when plotting vari-

ous expressions as a function of finite strain as opposed to the
geologically meaningless (at least usually) time parameter. It
is worth noting that for jWkj > 1, i.e. pulsating deformation
histories, the relationship between Rs and t becomes non-
unique, in which case evaluating the evolution of the system
by time is more reliable.

By solving Eq. (14) for time, substituting into Eq. (16), and
taking account of Eq. (7), an expression relating fs, Rs and Wk

is derived:

Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2ð2fsÞ

p
þW2

kð1þ tan2ð2fsÞÞ
1� 2Wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2ð2fsÞ

p
þW2

kð1þ tan2ð2fsÞÞ

s
ð18Þ

this equation needs to be inverted for Wk< 0 but can be used
as given for Wk> 0. Similar relationships have been derived
previously by Tikoff and Fossen (1995) and suggested as
a practical method for estimating Wk. Recently, Czeck and
Hudleston (2003) have successfully applied this type of anal-
ysis to conglomerates in the Archean Superior Province in the
North America craton. Eq. (18) can be used to derive an ex-
pression for fs in terms of Rs and Wk, and Wk in terms of fs

and Rs:

fs ¼
1

2
sec�1

�
Rsþ 1

WkðRs� 1Þ

�
ð19Þ
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Wk ¼
cos2ð2fsÞ

��
R2

s þ 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sec2ð2fsÞ
p

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

s sec2ð2fsÞ
p �

Rs� 1

ð20Þ
Notice that there are two solutions for Wk, one giving jWkj

� 1, i.e. pure to simple shear and another for jWkj > 1, i.e. su-
per shear or pulsating deformation histories. These equations
encapsulate the idea that under different deformation condi-
tions, a particular relationship between the intensity and orien-
tation of the finite strain ellipse exists. In a region, where
deformation conditions were spatially uniform, but resulted
in different levels of finite strain due to spatially varying defor-
mation rates, then the variation in Rs versus fs could be used to
estimate the value of Wk (Tikoff and Fossen, 1995; Czeck and
Hudleston, 2003).

3. Fabrics due to a population of rigid objects undergoing
a general deformation

3.1. Introduction

In this section, the probability density function (pdf) to de-
scribe the fabric developed by a population of rigid elliptical
objects under a general deformation is derived. A pdf is a func-
tion which gives the relative probability that an elliptical ob-
ject is oriented with its long axis along a particular
direction. For circular data, pdfs have the following properties
(Mardia, 1972, p. 40):

1. f ðfÞ � 0; �N < f < N
2. f ðfþ 2pÞ ¼ f ðfÞ; �N < f < N

3.
R 2p

0 f ðfÞdf ¼ 1

where f is long axis orientation in radians and f is the pdf. The
probability P that the orientation of an object lies between two
orientations (f1 and f2) is given by:

P¼
Zf2

f1

f ðfÞdf ð21Þ

For every pdf there is a corresponding distribution function
(F ) defined as (Mardia, 1972, p. 39; Allen, 1978, p. 81):

dF

df
¼ f ðfÞ ð22Þ
f ðfÞ ¼ 1

2p
; �N< f< N ð23Þ

3.2. Probability density function

The rotation rate of a single rigid object under a general de-
formation, as described in the previous section, is given by Eq.
(8) which may be written as:

_f¼ aþ b cos 2f ð24Þ

where a ¼ ðL21 � L12Þ=2 and b ¼ ððL21 þ L12Þ
ðR2 � 1ÞÞ=2ðR2 þ 1Þ. The solution to this differential equation
is given by:

fðtÞ¼�tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2

p
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2

p
tþtanh�1

� ffiffiffiffiffiffiffiffiffiffi
b2�a2
p

tanf0

aþb

��
a�b

ð25Þ

where f0 is the initial orientation of the ellipse long axis. So that
given the deformation regime, object aspect ratio and initial ori-
entation, we can determine orientation at any time in the future.

However, from elementary calculus (Mulchrone, 2002):

dF

df
¼ dF

df0

df0

df
ð26Þ

that is:

f ðfÞ ¼ f ðf0Þ
df0

df
ð27Þ

In other words, the pdf at any time t is the product of the
initial form of the pdf and the derivative ðdf0=dfÞ. The pdf
for a population of rigid objects can now be derived, if it is as-
sumed that the long axes were initially uniformly distributed.
From Eq. (25):

f0¼ tan�1

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2

p
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2

p
t� tanh�1

� ffiffiffiffiffiffiffiffiffi
b2�a2
p

tan f

aþb

��
a�b

35
ð28Þ

Differentiating Eq. (28) and substituting the result and Eq.
(23) into Eq. (27) gives the pdf for a deformed initially uni-
form distribution of rigid ellipses:
The pdf of a uniform distribution of objects is given by
(Mardia, 1972, p. 50):

There are two varieties of solution, stable and periodic,
when considering the evolution of this pdf over time. This

fðfÞ ¼ ða� bÞðaþ bÞ

2pðaþ b cos 2fÞ
�

a� b cosh
h
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
t� 2 tanh�1

� ffiffiffiffiffiffiffiffiffiffi
b2�a2
p

tan f

aþb

�	� ð29Þ
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result is derived by considering the form of the cosh term
under the line, which is the only time dependent term. The
value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
can be either real or imaginary depending

on the values of a and b, i.e. L12, L21 and R. If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
is

real then the cosh term keeps the form shown in Eq. (29)
and the solution is non-periodic and the pdf becomes more
and more intense as time progresses. If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
is imaginary

then, by noting that tanh�1ðixÞ ¼ i tan�1ðxÞ and coshðixÞ ¼
cosðxÞ, the solution becomes:

In this case the pdf evolves in periodically over time due to
the cos term, becoming successively more and less intense.
The term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
is real if:

b2 > a2 ð31Þ

which after much manipulation amounts to stable solutions
for:

�R2� 1

R2þ 1
< Wk <

R2� 1

R2þ 1
ð32Þ

and periodic solutions otherwise. This is exactly the same cri-
teria which distinguishes between continuously and asymptot-
ically rotating individual objects (Mulchrone et al., 2005). The
period of the fabric cycle is given by:

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� b2

p ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL12 þ L21Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

k �
�

R2�1
R2þ1

�2
q ð33Þ

so that larger Wk results in shorter fabric cycles whereas larger
R results in longer cycles.

3.3. Behaviour of the probability density function

In this section, the properties of the pdf in Eq. (29) are
graphically investigated. Consistent with the analysis of the
previous section, Fig. 2(a) and (b) plainly illustrate the differ-
ent population behaviours under simple and pure shear. In sim-
ple shear the clustering of orientation becomes periodically
more and less dense, whereas under pure shear it always be-
comes more intense. Looking instead at the behaviour of as-
pect ratios between 1 and 10 it is clear that for low finite
strain (i.e. Fig. 2(c) and (d)) there is little difference between
the populations under simple and pure shear. This similarity
will be echoed in both the statistical parameters’ study and pa-
rameter estimation technique introduced below. However, as
the finite strain increases obvious differences emerge. Com-
paring Fig. 2(e) with (f) (Rs¼ 20.0) and Fig. 2(g) with (h)
(Rs¼ 60.0) the rotational aspect of populations becomes

fðfÞ ¼ ða� bÞðaþ bÞ

2pðaþ b cos 2fÞ
�

a� b cos
h
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
t�
apparent, i.e. under simple shear a general asymmetry appears.
Also at the highest strain levels (Fig. 2(g)) the pulsating fabric
effect seen in Fig. 2(a) kicks in and the fabric of the lower
aspect ratio section of the population begins to become less
intense. This cannot occur under pure shear.

3.4. Statistics for describing rigid object populations

In studying the intensity and mean orientation of a shape
fabric of populations of rigid elliptical objects, it is desirable

to choose measures which can be applied to natural data.
This facilitates the development of methods based on theory
which can be applied in practice. It is proposed here that the
mean resultant length ðR1Þ, mean orientation ðf1Þ, skewness
(s) or asymmetry and kurtosis (k) or peakedness commonly
used in circular statistics (Mardia, 1972, p. 20, 34e35; Fisher,
1993, p. 31e34) be used to represent the intensity, orientation,
symmetry and form of a shape fabric, respectively. Rð ¼ R1Þ
has already been used by Mulchrone (2002) and has been di-
rectly related to the strain ellipse for populations of passively
deformed linear elements. Masuda et al. (1999) used a von
Mises distribution to characterise fabrics, which entailed
calculating R and f1. In this section a bar denotes a quantity
evaluated using discrete data, whereas the absence of a bar in-
dicates a quantity evaluated theoretically. For a discrete set of
n ellipse orientations, we calculate:

Sp ¼
1

n

Xn

i¼1

sin pfi ð34Þ

Cp ¼
1

n

Xn

i¼1

cos pfi ð35Þ

then the mean resultant length and orientation are:

Rp ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

pþC2
p

q
ð36Þ

fp ¼ tan�1

�
Sp

Cp

�
ð37Þ

Normally R1 is simply denoted by R and f1 by f. An esti-
mate for R1 derived from a population is denoted by br1 and
likewise f1 is estimated by bm1. In general a ‘hat’ denotes a
population estimate. Kurtosis and skewness measures are nor-
mally derived using the centered trigonometric moments as
follows:

tan�1
� ffiffiffiffiffiffiffiffiffiffi

a2�b2
p

tan f

aþb

�	� ð30Þ
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Fig. 2. Contour plots of theoretical pdf for populations of rigid objects. Lighter

areas represent higher probabilities whereas the reverse applies for darker re-

gions. (a) Simple shear for object aspect ratio R¼ 2.0. (b) Pure shear for object

aspect ratio R¼ 2.0. (c) Simple shear, Rs¼ 2.0. (d) Pure shear, Rs¼ 2.0. (e)

Simple shear, Rs¼ 20.0. (f) Pure shear, Rs¼ 20.0. (g) Simple shear,

Rs¼ 60.0. (h) Pure shear, Rs¼ 60.0.
S0p ¼ 1
n

Pn
i¼1 sin pðfi�f1Þ

C0p ¼ 1
n

Pn
i¼1 cos pðfi�f1Þ

which give corresponding measures R01 and f0p. Then kurtosis
and skewness can be defined (Fisher, 1993, p. 34):

s¼
R02 sin

�
f02� 2f01

��
1�R01

�3=2
ð38Þ

k ¼
R02 cos

�
f02 � 2f01

�
�R041�

1�R01
�2 ð39Þ

Ellipse orientation data are axial, i.e. fi¼ fi� jp, where j is
an integer, and results in the cross-over problem (Fisher, 1993,
p. 31). To avoid this problem the data are first doubled prior to
application of Eq. (34)e(39), and therefore to retrieve the cor-
rect mean orientation the result of Eq. (37) should be halved.

The continuous analogues of Eqs. (34) and (35) are given
by (Mulchrone, 2002):

Sp ¼
Z2p

0

sinðpfÞf ðf=2Þdf ð40Þ

Cp ¼
Z2p

0

sinðpfÞf ðf=2Þdf ð41Þ

with the centered trigonometric moments given by (Fisher,
1993, p. 41):

S0p ¼
Z2p

0

sinðpðf�f1ÞÞf ðf=2Þdf ð42Þ

C0p ¼
Z2p

0

sinðpðf�f1ÞÞf ðf=2Þdf ð43Þ

where f is the pdf and the argument to the pdf is halved to take
account of the cross-over problem (i.e. halving the argument
doubles the wavelength). This implies that the output from
Eq. (37) also needs to be halved to give the correct mean ori-
entation. In order to calculate the parameters (R1, f1, s and k)
for the theoretical pdf, Eqs. (40)e(43) need to be evaluated for
p¼ 1 and 2. The continuous versions of the expressions for
skewness and kurtosis are (Fisher, 1993, p. 42):

s¼ S02�
1�R01

�3=2

k ¼ C02�R041�
1�R01

�2

Eq. (29) can be rewritten in the following form:
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f ðfÞ ¼ a1

2pðb1þ c1 cosð2fÞ þ d1 sinð2fÞÞ ð44Þ

where:

examine the theoretical behaviour of the above statistical
parameters. Fig. 3 illustrates the relationship between the cen-
tered mean resultant vector ðR01Þ and finite strain and Wk. For
populations of objects with low aspect ratio R01 tends to vary

a1 ¼ ða� bÞðaþ bÞ; b1 ¼ a2 � b2 cosh
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
t
�

c1 ¼ �2ab sinh2
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
t
�
; d1 ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
sinh

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
t
� ð45Þ
This transformation facilitates evaluation of the integrals
required in Eqs. (40) and (41), which turn out to have analyt-
ical solutions. Key solutions are written out in the Appendix. It
is noteworthy that S02 ¼ 0, which implies that skewness is ex-
pected to be close to 0 and that symmetric distributions occur
independent of the type of deformation. Additionally S02 ¼ 0,
which implies that f01 ¼ 0 for centered distributions (this is
to be expected since the distributions have been re-oriented
by the mean orientation f1 see Eqs. (42) and (43).

3.5. Behaviour of rigid object population statistics
during deformation

One possible method of estimating both the finite strain and
type of deformation that lead to a particular distribution is to
quite markedly with Wk and Rs. Therefore R01 is difficult to in-
terpret in such cases (see Fig. 3(a) and (b)). However, by con-
sidering the high aspect ratio population, i.e. R> 5 then the
variation with Wk diminishes enabling a good estimate of Rs

to be found (see Fig. 3(d)). This result immediately suggests
a graphical technique for rigid object population analysis
whereby high aspect ratio objects are used to estimate Rs

from R01 (i.e. Fig. 3(d) and for real data use the corresponding
discrete statistic). Using the estimate of Rs, Wk can be esti-
mated from the low aspect ratio subpopulation (i.e.
Fig. 3(a)). It is interesting to note that even for R¼ 1.5
(Fig. 3(a)), the curves for different values of Wk are indistin-
guishable for low finite strains. Additionally, even at high
finite strains the curves for 0.0�Wk� 0.66 are extremely
close together, which implies that the quality and quantity of
data required to differentiate between these possibilities may
Fig. 3. Plot of theoretical centered mean resultant vector ðR01Þ versus finite strain for various object axial ratios and flow types. The numbers on (a) are kinematic

vorticity numbers (Wk). The plots in (b)e(d) show a similar trend, i.e. the lowest curve is for Wk¼ 1 and lower values occur for the higher and less distinguishable

curves.
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not be readily available in the field, keeping in mind that every
estimate for R01 will incorporate some sampling error at the
very minimum.

An alternative approach involves comparing the mean ori-
entations (i.e. f1) of subpopulations segregated by aspect ratio.
Let the mean orientation of a subpopulation with aspect ratio R
be denoted by f

ðRÞ
1 . In the field it is usually difficult to accu-

rately identify the kinematic reference frame of a deformation
without first making assumptions about the nature of the defor-
mation (which defeats the purpose of trying to independently
estimate Wk). Therefore in the absence of a readily identifiable
reference frame it makes sense to compare the difference in
orientation between two subpopulations. Let f

ðRa;RbÞ
1 ¼

f
ðRaÞ
1 � f

ðRbÞ
1 . The relationship between f

ðRa;RbÞ
1 , Wk and Rs is

investigated in Fig. 4. These plots indicate the importance of
both Wk and Rs in the interpretation of these angular relation-
ships. An independent estimate of Rs is required in order to
calculate a value for Wk. However, unlike the mean resultant
vector method above, comparing mean orientation cannot
give an independent estimate of Rs. In general, the closer to-
gether and higher the subpopulation aspect ratios, the less dis-
tinguishable are the curves. The optimal dataset would include
Fig. 4. Plot of theoretical mean orientation difference between two subpopulations. Numbers annotated on curves give values for Wk. For the sake of legibility not

all curves are labeled in (b)e(d), but the pattern is similar to that found in (a). (a) Mean orientation difference between subpopulations (R¼ 1.5 and 3.0); (b)

R¼ 1.5 and 6.0; (c) R¼ 2.0 and 3.0; (d) R¼ 2.0 and 6.0; (e) R¼ 4.0 and 6.0; (f) R¼ 4.0 and 8.0.
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data from low aspect ratio objects and high aspect ratio
objects. There are limitations associated with this type of anal-
ysis. Even if an ideal dataset were obtained (i.e. R¼ 1.5 and
6.0 as in Fig. 4(b)) then Rs should be greater than 10 in order
to distinguish Wk. Consider the case of Fig. 4(b), where even at
high finite strain, determining Wk� 0.43 requires the ability to
accurately identify f

ð1:5;6:0Þ
1 < 5

�
. Given the occurrence of

sampling error in practice, the method is likely to be of low
accuracy at best. It is unlikely that data of a suitable type,
quality and in sufficient quantity could be collected from a nat-
ural example.

The skewness of a deformed rigid object population is the-
oretically predicted to be zero, however, kurtosis might be
a useful parameter. The variation of kurtosis with Wk and Rs

is shown for selected aspect ratios in Fig. 5. Again the pattern
is similar to that seen for other statistical parameters, whereby
an independent estimate of Rs is required to estimate Wk and
the accuracy of estimating Wk is unlikely to be accurate for
Wk� 0.43.

4. Maximum likelihood estimation of deformation
parameters

4.1. Introduction

Maximum likelihood parameter estimation (MLE) is one of
the most widely used estimation techniques employed by stat-
isticians (Devore, 1995, p. 270). It can sometimes be used to
derive analytical expressions for estimating parameters but im-
portantly there is a numerically based approach which works
provided the probability density function is known. Suppose
that x is an observation (it may comprise one or more values,
for example, in the present case each x would be made up of
a pair of object axial ratio, Ri, and long axis orientation, fi

values) and q is a set of one or more parameters and the pdf
is given by f ðx; qÞ. Then the likelihood function is defined as:

Lðx1;x2;.;xn;qÞ ¼
Yn

i¼1

f ðxi;qÞ ð46Þ

The maximum likelihood estimation of the parameters q, is
the value hq which maximises L. It is equivalent and often
practically easier and more efficient to maximise the natural
log of L. In seeking analytical solutions, calculus is employed
to estimate hq by looking at the derivatives of L with respect
to the parameters. In the present case (see Eqs. (30) and (20)),
this approach becomes intractable and therefore a numerical
approach is favoured.

In a natural sample, we can measure xi ¼ ðRi;fiÞ for a pop-
ulation of n objects. Consulting the pdf derived earlier (see Eq.
(29)) and noting the interchangeability of time t and Rs, our
unknown set of parameters is q ¼ ðL12; L21;Rs;frefÞ. In the
case of natural data the reference direction for orientation
measurement may not parallel the orientation of the kinematic
reference frame (chosen here for convenience so that the ve-
locity gradient tensor takes the form shown in Eq. (1)). There-
fore each fi is modified to fi� fref so that this potential
discrepancy can be handled. The parameter list can be con-
densed further by considering the expression for Wk (see Eq.
(2)). Divide above and below by L21 to get:

Wk ¼
L12

L21
� 1


L12

L21
þ 1





implying that Wk depends on the ratio rather than the absolute
values of L12 and L21. Therefore without any loss of generality
L12 can be assigned the value 1 and then our parameter list

Fig. 5. Plot of kurtosis (k) versus Rs for populations with aspect ratios of (a)

2.0; (b) 3.0; and (c) 6.0. Numbers annotated in (a) are for Wk and (b) and

(c) follow a similar pattern. Notice the varying ordinate axis scales.
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becomes q ¼ ðL21;Rs;frefÞ so that Wk can be determined from
the estimate of L21.

Using the pdf for a rigid object population (Eq. (29)) derived
earlier the likelihood function is constructed as follows. For
each data point xi substitute the values of Ri, fi into Eq. (29)
in place of R and f. Additionally let L12 take the value 1 and
substitute in the value of t from Eq. (17). Finally take the nat-
ural log of the expression and sum over all xi. Numerical
methods, readily available in software packages such as Math-
ematica and Matlab, can be used to find the parameter values
(i.e. L21, Rs and fref) which maximise the likelihood function.

4.2. Simulation

In order to test the new method for finite strain estimation
and vorticity analysis, a simulation experiment was carried out
to assess the performance of the method under ideal conditions
(i.e. the only source of error is from the sampling distribution).
This turned out to be a very useful exercise because even
though the method nearly always accurately calculates finite
strain, there are significant limitations on its ability to estimate
Wk in line with the earlier more qualitative analysis. Therefore
this simulation provides a partial guide to the proper use of the
method in practice.

Results are presented in Figs. 6 and 7. Firstly for a large
number of readings (i.e. 1000) we see that the finite strain is
well estimated by the method at low applied finite strains
(<40, see Fig. 6(a)). In contrast the error associated with
this method of estimation increases in the case of higher ap-
plied finite strain (as evidenced from the variability of values
around the true value in Fig. 6(c). This is to be expected given
the increasing error behaviour with applied finite strain al-
ready documented for Rf/f type methods (Meere and
Mulchrone, 2003). This behaviour contrasts sharply with the
method’s ability to estimate Wk where the reverse situation
prevails, i.e. error prone estimates at low finite strains but
improved estimates at higher strains. In Fig. 7 the same set
of experiments was performed but for a lower number objects
(n¼ 100). A similar pattern emerges although the overall var-
iability of the results is higher.

Under simple shear deformation cyclical population behav-
iour (i.e. periodically increasing and decreasing strains) is ex-
pected for a particular axial ratio and the period of the cycle
depends on the axial ratio (Eq. (33)). In the simulation a range
of axial ratio values was considered and for the range of Rs ex-
amined cyclical behaviour for the total population was not ob-
served. In natural shear zones, where large movements have
taken place, such cyclical population behaviour may occur.
In such cases, the estimate of finite strain derived using this
method may not be representative of the total finite strain.
However, we can explore this concern from a theoretical per-
spective as well. From above, the theoretical expression for the
mean orientation of a rigid object population under simple
shear (i.e. L21¼ 0) is given by:
Fig. 6. Results of simulation for 1000 objects under low and high finite strain and various flow types. (a) Rs (applied) varies from 1 to 40 along the ordinate axis, Wk

(applied) varies from 0 to 1 along the coordinate axis and Rs (calculated) varies along the vertical axis. The surface is relatively smooth and Rs (calculated)

corresponds well with Rs (applied) independently of Wk (applied). (b) Rs (applied) varies from 1 to 40 along the ordinate axis, Wk (applied) varies from 0 to 1

along the coordinate axis and Wk (calculated) varies along the vertical axis. The surface is relatively uneven and Wk (calculated) is not always consistent with

Wk (applied) except when Rs(applied) U35. (c) Axes same as in (a). Surface is relatively uneven, indicating poor correlation between Rs (calculated) and Rs

(applied). (d) Same axes as in (b). Surface is fairly smooth indicating better correlation between Wk (calculated) and Wk (applied).
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Fig. 7. Results of simulation for 100 objects under low and high finite strain and various flow types. (a) Axes as in Fig. 6(a). The surface is relatively smooth and Rs

(calculated) corresponds reasonably with Rs (applied) independently of Wk (applied). (b) Axes as in Fig. 6(b). The surface is relatively uneven and Wk (calculated)

is not consistent with Wk (applied) even when Rs (applied) U35. (c) Axes as in Fig. 6(a). Surface is relatively uneven, indicating poor correlation between Rs

(calculated) and Rs (applied). (d) Axes as in Fig. 6(b). Surface is fairly uneven indicating poor correlation between Wk (calculated) and Wk (applied).
tanðf1Þ ¼
2R

1þR2
cot

�
L12Rt

1þR2

�
ð47Þ

Considering a range of values of R, then for an overall pe-
riodic behaviour we expect to be able to find a period T such
that:

2R

1þR2
cot

�
L12Rt

1þR2

�
¼ 2R

1þR2
cot

�
L12Rðtþ TÞ

1þR2

�
which only has a solution for T¼ 0, i.e. no such period exists.
Therefore, even though cyclical behaviour occurs for popula-
tions of a single axial ratio, populations exhibiting a wide
range of axial ratios cannot exhibit periodicity. This means
that the derived method can be used to calculate finite strain
under a simple shear.

A detailed exploration of the error behaviour of the method is
beyond the scope of this paper and is left for future investigation.

5. Discussion and conclusions

Extracting meaningful information from a population of el-
liptical objects is based on the validity of two assumptions: (i)
an initially uniform distribution of long axis orientations and
(ii) the mechanisms operating during deformation which bring
about the modified distribution. In this paper the first assump-
tion is retained whilst in the second assumption the usual
mechanism of passive behaviour (typically made in Rf/f and
related methods, e.g. Ramsay, 1967, p. 202; Shimamoto and
Ikeda, 1976; Robin, 1977) is replaced with that of rigid ellip-
tical object rotation (Jeffery, 1922). There are many other
possible mechanisms that may be at work (i.e. the objects
may be deformable or slip may occur at the boundary or pres-
sure solution may modify object geometries) so the method
presented here is by no means the only alternative to passive
behaviour. However, in cases where rigid behaviour is likely
then the method developed here should provide more realistic
estimates of both finite strain and vorticity number. Misappli-
cation of the method developed here or traditional Rf/f
methods can lead to erroneous results, therefore blind imple-
mentation of either method is not recommended. In particular,
the method derived here applies only to 2D populations where
3D effects can be ignored and it is important that the popula-
tion of objects is not closely spaced such that interaction
effects become important.

The ability of the method, described above, to attempt esti-
mation of both finite strain and vorticity relates to the fact that
it simultaneously utilises both axial ratio and orientation infor-
mation from the population. If there is not a sufficient varia-
tion in the axial ratio distribution, then vorticity analysis is
not possible. That is, for a population all with the same axial
ratio, there is no difference between the shapes of the distribu-
tion of orientations under different kinematic conditions to al-
low the type of deformation applied to be distinguished.
However, as shown above, different classes of axial ratios re-
spond differently, relative to each other, enabling an attempt at
vorticity estimation.
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The probability distribution function of a population of
rigid objects under a general 2D deformation and its behaviour
under a variety of kinematic conditions were considered. The-
oretical values for typical statistics applied to orientational
data (Mardia, 1972) were also derived and may be used to
graphically estimate both finite strain and vorticity. A numer-
ical approach based on the maximum likelihood method is
favoured and results of a simulation study indicate that finite
strain can be nearly always accurately calculated, but that ac-
curate estimation of Wk is only possible at high finite strains
and large sample numbers.
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A. Appendix

Letting k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ d2
1 � b2

1

p
, the solved integrals for S1, S2,

C1,C2, R1, R2, f1, f2, S01, S02, C01 and C02 are:
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